Irradiation of the Juvenile Brain Provokes a Shift from Long-Term Potentiation to Long-Term Depression.
نویسندگان
چکیده
Radiotherapy is common in the treatment of brain tumors in children but often causes deleterious, late-appearing sequelae, including cognitive decline. This is thought to be caused, at least partly, by the suppression of hippocampal neurogenesis. However, the changes in neuronal network properties in the dentate gyrus (DG) following the irradiation of the young, growing brain are still poorly understood. We characterized the long-lasting effects of irradiation on the electrophysiological properties of the DG after a single dose of 6-Gy whole-brain irradiation on postnatal day 11 in male Wistar rats. The assessment of the basal excitatory transmission in the medial perforant pathway (MPP) by an examination of the field excitatory postsynaptic potential/volley ratio showed an increase of the synaptic efficacy per axon in irradiated animals compared to sham controls. The paired-pulse ratio at the MPP granule cell synapses was not affected by irradiation, suggesting that the release probability of neurotransmitters was not altered. Surprisingly, the induction of long-term synaptic plasticity in the DG by applying 4 trains of high-frequency stimulation provoked a shift from long-term potentiation (LTP) to long-term depression (LTD) in irradiated animals compared to sham controls. The morphological changes consisted in a virtually complete ablation of neurogenesis following irradiation, as judged by doublecortin immunostaining, while the inhibitory network of parvalbumin interneurons was intact. These data suggest that the irradiation of the juvenile brain caused permanent changes in synaptic plasticity that would seem consistent with an impairment of declarative learning. Unlike in our previous study in mice, lithium treatment did unfortunately not ameliorate any of the studied parameters. For the first time, we show that the effects of cranial irradiation on long-term synaptic plasticity is different in the juvenile compared with the adult brain, such that while irradiation of the adult brain will only cause a reduction in LTP, irradiation of the juvenile brain goes further and causes LTD. Although the mechanisms underlying the synaptic alterations need to be elucidated, these findings provide a better understanding of the effects of irradiation in the developing brain and the cognitive deficits observed in young patients who have been subjected to cranial radiotherapy. © 2015 S. Karger AG, Basel.
منابع مشابه
P3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory
Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...
متن کاملImprovement in Memory and Brain Long-term Potentiation Deficits Due to Permanent Hypoperfusion/Ischemia by Grape Seed Extract in Rats
Objective(s): Cerebral hypoperfusion/ischemia (CHI) is a neurological disease where impaired hippocampus electrical activity and cognition caused by a serial pathophysiological events. This study aimed to evaluate the effects of chronic oral administration of grape seed extract (GSE) on passive avoidance memory and long-term potentiation (LTP) after permanent bilateral common carotid arteries...
متن کاملBlock of 5-HT2 Receptors Enhances Hippocampal Long-Term Potentiation
The effect of endogenous serotonin on long-term potentiation (LTP) in region CAI was studied by blocking 5-HT2 receptors with ketanserin in rat hippocampal slices. Such a block significantly en-hanced long-term potentiation of the CAI population spike induced by high frequency stimulation of the schaffer collateral/ commissural pathway. This implies that serotonin acts on 5-HT2 receptors in CAI...
متن کاملLow-power density of 950 MHz radiation does not affect long-term potentiation in rat dentate gyrus
Introduction: Over the last decade, exposure to non-ionizing electromagnetic waves due to base station antenna has increased. This in vivo study was planned for evaluating the effects of whole-body exposure to 950 MHz field of GSM mobile phone system on rat dentate gyrus long-term potentiation. Materials and Methods: 24 naive male Wistar rats (3 month old, 225|¡|25 g) were randomly divided in t...
متن کاملThe Effect of Noise Pollution Exposure during Pregnancy on Long Term Potentiation Induction in Pyramidal Neurons of Hippocampus CA1 area in Male Rat Offsprings
Background: It is believed that cognitive processing is easily disturbed by incompatible environmental stimulations. Many studies have shown that prenatal stress affects fetal brain development. The aim of this study was to evaluate the effect of noise pollution exposure during conception period on neural activity of hippocampus CA1 area in male rat offspring. Methods: Four groups of rats inclu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Developmental neuroscience
دوره 37 3 شماره
صفحات -
تاریخ انتشار 2015